CASE REPORT

Immediate provisional restoration of a single-tooth implant in the esthetic zone: A case report

Po-Sung Fu a, Yi-Min Wub,c, Ching-Fang Tsaid, Ta-Ko Huangb, Wen-Cheng Chenb,e, Chun-Cheng Hungb,d,*

a Department of Family Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
b School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
c Department of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
d Department of Prosthodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
e Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan

Received 15 March 2010; accepted 25 June 2010
Available online 10 February 2011

KEYWORDS
Autogenous bone;
Immediate implant restoration;
Implant;
Peri-implant esthetics

Abstract Immediate implant restoration of single implants may demonstrate a positive effect on peri-implant soft tissue. Placement of a provisional restoration following implant surgery can create soft tissue contours that resemble normal gingival topography before placement of the definitive prosthesis. This article describes a staged approach of the mandibular permanent right central incisor, which was congenital missing. The proper space for restoration of the missing incisor was created through orthodontic treatment. The scheduled implant site was reconstructed using autogenous bone harvested from the chin region. After a healing period of four months, an implant was installed with the connection of a fixed provisional crown to a prefabricated temporary abutment. The soft tissue around the implant healed according to the contours of the provisional restoration and the emergence profile was used to duplicate the definitive restoration. Peri-implant esthetics was achieved through the staged approach and immediate restoration of the implant.

* Corresponding author. Department of Prosthodontics, Kaohsiung Medical University Hospital, 100 Tzyou 1st Road, Kaohsiung 807, Taiwan. E-mail address: yuchali@ms21.hinet.net (C.-C. Hung).

1607-551X/$36 Copyright © 2011, Elsevier Taiwan LLC. All rights reserved.
doi:10.1016/j.kjms.2010.06.002
Introduction

Traditional dental implant treatment usually requires an extended period for tissue healing and maturation before completion of the restoration. During the healing period, provisional treatment can be a challenge for the patient and the dentist, especially in the esthetic zone. Objectively, the esthetic zone is defined as any dentoalveolar segment that is visible on full smile. Subjectively, the esthetic zone can be defined as any dentoalveolar area of esthetic importance to a patient. With the rapid development of implant dentistry, new approaches aim to shorten the overall treatment time that have been proposed, such as immediate implant placement and immediate implant restoration following implant placement. The benefits of immediate implant restoration are optimized gingival form before definitive restorations, better clinical efficiency, fewer surgical interventions, and shortened treatment time.

Many studies have confirmed that immediate implant restoration shows similar success rates to a two-stage conventional approach and have reported short-term success rates between 96% and 100% [1–7]. Factors essential to success of immediate restoration include initial implant stability in good quality bone, surgical technique, and host- and occlusal-related factors [8–10].

The purpose of this report was to present a staged approach of the congenitally missing mandibular incisor with orthodontic treatment, ridge augmentation, and implant therapy. The single-tooth implant successfully replaced the missing incisor, both functionally and esthetically. The immediate implant restoration eliminates the period necessary for soft tissue healing and contouring because healing occurred concurrently with implant osseointegration. A detailed treatment process was also described.

Case presentation

A 32-year-old male presented with congenital missing of the mandibular permanent right central incisor and prolonged retention of the deciduous incisor. According to his statement, he had no systemic disease or drug allergy history. The patient had a Class I, bimaxillary protrusive malocclusion. The clinical examination demonstrated that the mandibular deciduous right central incisor displayed short clinical crown with Grade I tooth mobility. A panoramic radiograph revealed the presence of a diminutive mandibular deciduous right central incisor and a horizontally impacted mandibular left third molar (Fig. 1).

The treatment plan included extraction of four first premolars and a dental implant replacement of the congenital missing mandibular permanent incisor. At the finishing stage of orthodontic treatment, the proper space for restoration of the missing mandibular permanent incisor was created. The existing bone of the mandibular deciduous right central incisor was reevaluated by bone sounding with a periodontal probe. Deep bone sounding depths of 5–6 mm at the labial aspects and a labial concavity were observed. Immediate implant placement in this case may be risky and esthetically challenging. Therefore, the extraction of the mandibular deciduous right central incisor and socket preservation were considered. The tooth wasatraumatically removed with a Periotome (Nobel Biocare, Yorba Linda, CA, USA), which preserved the gingival and osseous architecture. A periodontal probe was used following tooth extraction to verify the integrity of the bony plate, and a 6-mm labial bone dehiscence was noted. The socket was preserved with bovine-derived xenograft (Bio-Oss®; Geistlich, Wolhusen, Switzerland) and a resorbable collagen membrane (BioMend Extend®; Sulzer Calcitek, Carlsbad, CA, USA). Primary closure was achieved with a coronally advanced flap (Fig. 2).

Five months after the socket preservation of the mandibular deciduous right central incisor, the designed implant site was reevaluated. Occlusal view of the edentulous ridge showed collapse of the labial and lingual gingival contours. Therefore, the bone augmentation procedure before implant placement was scheduled. After flap reflection, the labial and coronal defects of the scheduled implant site were reconstructed using autogenous bone harvested from the chin region. A nonresorbable...
membrane (Gore-Tex®, W.L. Gore and Associates, UK) was used and secured into place with two fixation nails. Tension-free primary closure of the wound was achieved through proper release of the flap (Fig. 3).

Four months following the bone augmentation, the recipient site was developed into proper contours for implant placement. A dental implant (XIVE®; Dentsply/Friadent, Mannheim, Germany) was installed into the prepared site with an insertion torque of 35 Ncm and a prefabricated temporary abutment (XIVE® TempBase®; Dentsply/Friadent, Mannheim, Germany) was connected to the fixture. Then a provisional acrylic resin crown was boned to the temporary abutment and adjusted (Fig. 4). The soft tissue was allowed to heal for approximately five months around the temporary restoration to accommodate sculpting and to allow for proper maturation of this tissue before final restoration. Five months after the immediate provisionalization, when the soft tissues had been esthetically sculpted and shaped, a final impression was taken and a zirconium abutment was made. An all-ceramic crown was delivered and cemented (Fig. 5). The three-year follow-up showed that the gingival architecture maintained the form as the definitive implant-supported crown was just delivered. Radiographic examination revealed the stable marginal bone level. The peri-implant esthetics was achieved and satisfied the patient’s functional and esthetic expectations (Fig. 6).

Discussion

An important issue in tooth replacement is to reestablish normal form and architecture of the hard and soft tissues before implant placement. This is especially challenging in the esthetic zone, where the replacement of a missing tooth must not only function but should also be esthetically harmonious with the contours of the adjacent natural dentition. In this case report, the site development before implant placement appeared to be critical to long-term stability and esthetics of the gingival tissues [11,12].

It is difficult to predict how sites will heal after socket preservation. Some sockets will heal without much resorption, whereas others will lose a lot of hard and soft tissue [13]. In this case presented, the Bio-Oss® particles were used as an osteoconductive material and for space maintenance beneath the membrane. This method has been shown to be effective for bone regeneration in the treatment of atrophic edentulous ridges [14]. Nevertheless, Fugazzotto [15] used Bio-Oss® with resorbable and non-resorbable membranes in guided bone regeneration and found that significant buccolingual ridge collapse was noted on reentry. Similarly in this case, the Bio-Oss® granules were not radiographically visible in the grafted site five months after the socket preservation and the edentulous ridge was still atrophic.

Autogenous bone is thought of as the “gold standard” among various grafting materials [16,17]. In this case, the nonresorbable membrane was used to prevent the ingrowth of gingival epithelium and connective tissue from the wound [18,19]. A healing period of four months allowed appropriate remodeling of the grafted autogenous bone without massive resorption [20,21]. Adequate bone volume was created for subsequent implant placement. The nonresorbable membrane could be removed simultaneously to implant insertion without additional reentry. However, postsurgery, the patient...
may experience discomfort in the donor site and they must be informed before performing the procedures.

One of the main prerequisites for immediate loading is sufficient initial implant stability. Different standard methods, such as the insertion torque, the Periotest® (Medizintechnik Gulden, Modautal, Germany) and resonance frequency analysis have been used to evaluate the implant stability [22,23]. Immediate provisionalization has been suggested when optimal primary stability is reflected by a placement torque greater than 30 Ncm or resonance frequency analysis demonstrated an implant stability quotient greater than 60 [3,24].

Implant-supported provisional restorations have been demonstrated to be an effective means to temporarily restore single implants following implant installation. There are many advantages of immediate provisionalization of implants, including the ability to immediately evaluate implant positioning; the desired emergence profile can be generated immediately to allow the soft tissue to heal to its designed contours; additional surgical operation or other
soft tissue manipulation may be avoided; being a diagnostic
tool to confirm esthetics, contours, accessibility for oral
hygiene; and can he used to duplicate the definitive restoration [25–27].

In this case, the deficiency in the mandibular central incisor region was reconstructed using a staged approach of site development. Immediate implant restoration of the single implant aided the contouring of peri-implant soft tissue and satisfied the patient. With precise protocols and meticulous techniques, immediate implant restoration may reduce treatment time and maximize esthetic outcomes.

References

