Anisotropic Best τ_C-Approximation in Normed Spaces

Xian-Fa Luo∗
Department of Mathematics
China Jiliang University
Hangzhou 310018, P R China

Chong Li†
Department of Mathematics
Zhejiang University
Hangzhou 310027, P R China

Jen-Chih Yao‡
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 804, Taiwan

Abstract

The notions of the τ_C-Kolmogorov condition, the τ_C-sun and the τ_C-regular point are introduced, and the relationships between them and the best τ_C-approximation are explored. As a consequence, characterizations of best τ_C-approximations from some kind of subsets (not necessarily convex) are obtained. As an application, a characterization result for a set C to be smooth is given in terms of the τ_C-approximation.

Keywords: Minkowski function; the best τ_C-approximation; the τ_C-Kolmogorov condition; the τ_C-sun; smoothness.

Mathematical Subject Classification (2000): 41A65

∗Email: luoxianfaseu@163.com; supported in part by the NNSF of China (Grant No. 90818020) and the NSF of Zhejiang Province of China (Grant No. Y7080235);
†Email: cli@zju.edu.cn; supported in part by the NNSF of China (Grant Nos. 10671175; 10731060)
‡Email:yaojc@math.nsusu.edu.tw; supported by the grant NSC 97-2115-M-110-001 (Taiwan);
1 Introduction

Let X be a real normed linear space and C be a closed, bounded, convex subset of X having the origin as an interior point. Recall that the Minkowski function p_C with respect to the set C is defined by

$$p_C(x) = \inf\{t > 0 : x \in tC\}, \ \forall \ x \in X.$$ \hspace{1cm} (1.1)

Let G be a subset of X and $x \in X$. Following [2], define the minimal time function $\tau_C(\cdot; G)$ by

$$\tau_C(x; G) := \inf_{g \in G} p_C(g - x), \ \forall x \in X.$$ \hspace{1cm} (1.2)

The study of the minimal time function $\tau_C(\cdot; G)$ is motivated by its worldwide applications in many areas of variational analysis, optimization, control theory, approximation theory, etc., and has received a lot of attention; see e.g., [2,6,7,9,11–13,17,18]. In particular, the proximal subgradient of the minimal time function $\tau_C(\cdot; G)$ is estimated and computed in [7, 17, 18], for Hilbert spaces with applications to control theory; while other various subgradients such as the Fréchet subgradients, Clark subgradients, the ε-subdifferential as well as the limiting subdifferential of the minimal time function $\tau_C(\cdot; G)$ in Hilbert spaces and/or general Banach spaces are explored in [6,9,13].

Our interest in the present paper is focused on the following minimization problem, denoted by $\min(x, G)$,

$$\min_{g \in G} p_C(g - x),$$ \hspace{1cm} (1.3)

where $x \in X$. Clearly, $g_0 \in G$ is a solution of the problem $\min(x, G)$ if and only if

$$p_C(g_0 - x) = \tau_C(x; G).$$

According to [2], any solution of the problem $\min(x, G)$ is called a best τ_C-approximation (or, generalized best approximation) to x from G. We denote by $P_C(x)$ the set of all best τ_C-approximations to x from G. The generic well-posedness of the minimization problem $\min(x, G)$ in terms of the Baire category was studied in [2,11], while the relationships between the existence of solutions and directional derivatives of the function $\tau_C(x; G)$ was explored in [12].

In the special case when C is the closed unit ball B of X, the minimal time function (1.2) and the corresponding minimization problem (1.3) are reduced to the distance function of C and to the classical best approximation, respectively, which has been studied extensively and deeply, see, e.g., [3,16,21].

One aim of the present paper is to characterize the class of subsets of X for which the so-called τ_C-Kolmogorov condition holds about best τ_C-approximations. Another aim of the present paper is to prove the equivalence between the smoothness of the underlying set C and the convexity of τ_C-B-suns. In particular, by taking C to be the closed unit ball of X, our results extend the corresponding ones for nonlinear approximation problems; see, e.g., [3,5,21].
2 Preliminaries

Let X be a real normed linear space and let X^* denote its topological dual. Let A be a nonempty subset of X. As usual, we use $\text{bd} A$ and $\text{int} A$ to denote respectively the boundary and the interior of A. The polar of A is denoted by A° and defined by

$$A^\circ = \{ x^* \in X^* : x^*(x) \leq 1, \ \forall x \in A \}.$$

Then A° is a weakly*-closed convex subset of X^*. Furthermore, in the case when A is a convex bounded set with $0 \in \text{int} A$, A° is weakly*-compact with $0 \in \text{int} A^\circ$. In particular, B° equals the closed unit ball of X^*. Moreover, for a set $A \subseteq X^*$, $\text{ext} A$ and A^\ast stand for the set of all extreme points and the weak* closure of A, respectively. The following proposition is exactly the well-known Krein-Milman Theorem, see, e.g., [10].

Proposition 2.1. Suppose that A is a compact convex subset of X^*. Then A equals the closed convex closure of $\text{ext} A$.

Let $\mu = \inf_{\|x\|=1} p_C(x)$ and $\nu = \sup_{\|x\|=1} p_C(x)$. We end this section with some known and useful properties of the Minkowski function; see [15, Section 1] for assertions (i)-(v) while (vi) is an immediate consequence of (iii) and (v).

Proposition 2.2. Let $x, y \in X$ and $x^* \in X^*$. Then we have the following assertions.

(i) $p_C(x) \geq 0$, and $p_C(x) = 0$ if and only if $x = 0$.

(ii) $p_C(x + y) \leq p_C(x) + p_C(y)$.

(iii) $p_C(\lambda x) = \lambda p_C(x)$ for each $\lambda > 0$.

(iv) $p_C(x) \leq 1$ if and only if $x \in C$.

(v) $p_C(x) = \sup_{x^* \in C^\circ} x^*(x)$ and $p_C^\circ(x^*) = \sup_{x \in C} x^*(x)$.

(vi) $\mu \|x\| \leq p_C(x) \leq \nu \|x\|$.

3 Characterization of the best τ_C-approximation

The notion of suns introduced by Efimov and Stechkin (cf. [8]) has proved to be rather important in nonlinear approximation theory; see, e.g., [3–5,8,21] and references therein. In the following definition we extend this notion to the case of the generalized approximation. Throughout the whole paper, we always assume that $G \subseteq X$ is a nonempty subset of X, and let $x \in X$ and $g_0 \in G$, unless specially stated.

Definition 3.1. The element g_0 is called

(a) a τ_C-solar point of G with respect to x if $g_0 \in P_G^C(x)$ implies that $g_0 \in P_G^C(x_{\lambda})$ for each $\lambda > 0$, where $x_{\lambda} = g_0 + \lambda(x - g_0)$;

(b) a τ_C-solar point of G if g_0 is a τ_C-solar point of G with respect to each $x \in X$.

We say that G is a τ_C-sun of X if each point of G is a τ_C-solar point of G.

Remark 3.1. We always write
\[x_\lambda = g_0 + \lambda(x - g_0), \quad \forall \lambda > 0 \]
if no confusion caused. Thus
\[p_C(g_0 - x_\lambda) = \lambda p_C(g_0 - x), \quad \forall \lambda > 0. \]

Furthermore, the following implication holds (cf. [13, Lemma 3.1]):
\[g_0 \in P_G^C(x) \implies g_0 \in P_G^C(x_\lambda), \quad \forall \lambda \in [0, 1]. \]

For two points \(x, y \in X \), we use \([x, y]\) to denote the closed interval with ends \(x \) and \(y \), that is,
\[[x, y] := \{tx + (1-t)y : t \in [0, 1]\}. \]

Recall (cf. [1]) that \(g_0 \in G \) is a star-shaped point of \(G \) if \([g_0, g] \subseteq G \) for each \(g \in G \). If \(G \) has a star-shaped point \(g_0 \), then \(G \) is called a star-shaped set with vertex \(g_0 \). Clearly, a convex subset is a star-shaped set with each vertex \(g_0 \in G \). We use \(S(g_0, G) \) to denote the star-shaped set with vertex \(g_0 \) generated by \(G \), that is,
\[S(g_0, G) := \bigcup_{g \in G} [g_0, g]. \]

Proposition 3.1. Suppose that \(g_0 \in G \) is a star-shaped point of \(G \). Then \(g_0 \) is a \(\tau_C \)-solar point of \(G \). Consequently, any convex subset of \(X \) is a \(\tau_C \)-sun of \(X \).

Proof. Let \(x \in X \) be such that \(g_0 \in P_G^C(x) \). By Remark 3.1, we only need to show that \(g_0 \in P_G^C(x_\lambda) \) for each \(\lambda > 1 \). To this end, let \(\lambda > 1 \) and \(g \in G \). Since \(g_0 \) is a star-shaped point of \(G \), it follows from Proposition 2.2(iii) that
\[p_C(g_0 - x) \leq p_C \left(\left(\left(1 - \frac{1}{\lambda} \right) g_0 + \frac{1}{\lambda} g \right) - x \right) = \frac{1}{\lambda} p_C(g - x_\lambda). \]

By (3.2),
\[p_C(g_0 - x_\lambda) = \lambda p_C(g_0 - x) \leq p_C(g - x_\lambda). \]

Hence, \(g_0 \in P_G^C(x_\lambda) \). This shows that \(g_0 \) is a \(\tau_C \)-solar point of \(G \). \(\square \)

The following proposition gives an equivalent condition for \(\tau_C \)-solar points in terms of star-shaped points.

Proposition 3.2. The element \(g_0 \) is a \(\tau_C \)-solar point of \(G \) if and only if
\[g_0 \in P_G^C(x) \iff g_0 \in P_{S(g_0, G)}^C(x), \quad \forall x \in X. \]

Proof. For \(x \in X \), it is clear that \(g_0 \in P_{S(g_0, G)}^C(x) \implies g_0 \in P_G^C(x). \) Thus, to complete the proof, it suffices to verify that \(g_0 \) is a \(\tau_C \)-solar point of \(G \) if and only if
\[g_0 \in P_G^C(x) \implies g_0 \in P_{S(g_0, G)}^C(x) \]
(3.4)
holds for each \(x \in X \). To this end, let \(x \in X \). By Definition 3.1 and Remark 3.1, one has that \(g_0 \) is a \(\tau_C \)-solar point of \(G \) if and only if the following implication holds:

\[
g_0 \in P_G^C(x) \implies g_0 \in P_G^C(x, \frac{1}{1-x}), \quad \forall \lambda \in [0, 1).
\]

Note by Proposition 2.2(iii) that

\[
g_0 \in P_G^C(x, \frac{1}{1-x}), \quad \forall \lambda \in [0, 1)
\]

\[
\iff \quad p_C(g_0 - x) \leq p_C((\lambda g_0 + (1 - \lambda)g) - x), \quad \forall g \in G, \quad \forall \lambda \in [0, 1)
\]

\[
\iff \quad g_0 \in P_G^C(S(x_0, G))(x).
\]

Hence, (3.5) holds if and only if (3.4) holds. This completes the proof. \(\square\)

Definition 3.2. The element \(g_0 \) is called a local best \(\tau_C \)-approximation to \(x \) from \(G \) if there exists an open neighborhood \(U(g_0) \) of \(g_0 \) such that \(g_0 \in P_G^C(x \cup U(g_0))(x) \).

Clearly, if \(g_0 \in P_G^C(x) \), then \(g_0 \) is a local best \(\tau_C \)-approximation to \(x \) from \(G \). The following proposition shows that the converse remains true if \(g_0 \) is a \(\tau_C \)-solar point of \(G \).

Proposition 3.3. Suppose that \(g_0 \) is a \(\tau_C \)-solar point of \(G \). Then \(g_0 \in P_G^C(x) \) if and only if \(g_0 \) is a local best \(\tau_C \)-approximation to \(x \) from \(G \).

Proof. The necessity part is clear as noted earlier. Below we prove the sufficiency part. To this end, suppose that \(g_0 \) is a local best \(\tau_C \)-approximation to \(x \) from \(G \). Then there exists an open neighborhood \(U(g_0) \) of \(g_0 \) such that \(g_0 \in P_G^C(x \cup U(g_0))(x) \). We claim that there is \(\lambda > 0 \) such that \(g_0 \in P_G^C(x_0) \). Indeed, otherwise, one has that \(g_0 \notin P_G^C(x_1/n) \) for each \(n \in \mathbb{N} \). Thus there exists a sequence \(\{g_n\} \subseteq G \) such that, for each \(n \in \mathbb{N} \),

\[
p_C(g_n - x_1/n) < p_C(g_0 - x_1/n) = \frac{1}{n}p_C(g_0 - x).
\]

(3.6)

It follows from Proposition 2.2(vi) that \(\lim_{n \to \infty} g_n = g_0 \). This implies that there exists \(n_0 \in \mathbb{N} \) such that \(g_{n_0} \in U(g_0) \cap G \). This together with (3.6) implies that \(g_0 \notin P_G^C(x_1/n_0) \), which is a contradiction by Remark 3.1 as \(g_0 \in P_G^C(x_0) \). Hence the claim stands; that is \(g_0 \in P_G^C(x_0) \) for some \(\lambda > 0 \). Noting that \(x = g_0 + \frac{1}{\lambda}(x_0 - g_0) \) and that \(g_0 \) is a \(\tau_C \)-solar point of \(G \), we have that

\[
g_0 \in P_G^C(g_0 + \frac{1}{\lambda}(x_0 - g_0)) = P_G^C(x)
\]

and completes the proof. \(\square\)

For the sequel study, we need to introduce the following notation:

\[
\Sigma_{g_0 - x} := \{x^* \in C^\circ : x^*(g_0 - x) = p_C(g_0 - x)\}.
\]

Then \(\Sigma_{g_0 - x} \) is a nonempty, weakly*-compact convex subset of \(C^\circ \). Furthermore, write \(\mathcal{E}_{g_0 - x} := \text{ext} \Sigma_{g_0 - x} \). Then \(\mathcal{E}_{g_0 - x} \neq \emptyset \) by Proposition 2.1. Moreover, by definition, we have that

\[
\mathcal{E}_{g_0 - x} = \text{ext} C^\circ \cap \Sigma_{g_0 - x}.
\]

(3.7)

The notions stated in Definition 3.3 below are extension of the notions of Kolmogorov Condition and Papini Condition in approximation theory to the setting of the best \(\tau_C \)-approximation theory, see, e.g., [4,5,21] and [14].
Definition 3.3. The pair \((x, g_0)\) is said to satisfy

(a) the \(\tau_C\)-Kolmogorov condition (the \(\tau_C\)-KC, for short) if

\[
\max_{x^* \in \Sigma_{g_0-x}} x^*(g - g_0) \geq 0, \quad \forall \ g \in G;
\]

(b) the \(\tau_C\)-Papini condition (the \(\tau_C\)-PC, for short) if

\[
\max_{x^* \in \Sigma_{g-x}} x^*(g_0 - g) \leq 0, \quad \forall \ g \in G.
\]

Clearly, by (3.7), \(\Sigma_{g_0-x}\) in (3.8) and \(\Sigma_{g-x}\) in (3.9) can be replaced by \(\mathcal{E}_{g_0-x}\) and \(\mathcal{E}_{g-x}\), respectively.

In the case when \(C\) is the closed unit ball of \(X\), that is, \(p_C\) is the norm, the notions of the regular point and the strongly regular point were introduced and studied respectively in [5] and [21]. The following notions of the \(\tau_C\)-regular point and the strongly \(\tau_C\)-regular point are respectively generalizations of the corresponding regular point and strongly regular point in best approximation theory.

Definition 3.4. The element \(g_0\) is called

(a) a \(\tau_C\)-regular point of \(G\) with respect to \(x\) if for any weakly\(^*\)-closed subset \(A\) of \(C^0\) satisfying for some \(g \in G\) the condition

\[
\mathcal{E}_{g_0-x} \subseteq A \subseteq \overline{\text{ext}C^0}\quad \text{and} \quad \min_{x^* \in \mathcal{E}} x^*(g_0 - g) > 0,
\]

there exists a sequence \(\{g_n\}\) such that \(g_n \to g_0\) and

\[
x^*(g_0 - g_n) > x^*(g_0 - x) - p_C(g_0 - x), \quad \forall \ x^* \in A, \ \forall \ n \in \mathbb{N};
\]

(b) a strongly \(\tau_C\)-regular point of \(G\) with respect to \(x\) if for any weakly\(^*\)-closed subset \(A\) of \(C^0\) satisfying (3.10) for some \(g \in G\), there exists a sequence \(\{g_n\}\) such that \(g_n \to g_0\) and

\[
x^*(g_0 - g_n) > 0, \quad \forall \ x^* \in A, \ \forall \ n \in \mathbb{N}.
\]

We say that \(G\) is a \(\tau_C\)-regular set (resp. strongly \(\tau_C\)-regular set) of \(X\) if each point of \(G\) is a \(\tau_C\)-regular point (resp. strongly \(\tau_C\)-regular point) of \(G\) with respect to each \(x \in X\).

Roughly speaking, a \(\tau_C\)-regular point \(g_0\) of \(G\) with respect to \(x\) means that, for any weakly\(^*\)-closed neighbourhood \(A\) of the extreme set \(\mathcal{E}_{g_0-x}\), if there exists some \(g \in G\) such that \(g_0 - g\) is positive on \(A\), then any neighbourhood of \(g_0\) contains an element \(g' \in G\) such that \(g_0 - g'\) has the same sign as \(g_0 - g\) on the set \(\mathcal{E}_{g_0-x}\) while out of this set it can have opposite sign but have to be controlled within \(p_C(g_0 - x) - x^*(g_0 - x)\); while, for a strongly \(\tau_C\)-regular point \(g_0\), \(g_0 - g'\) must have the same sign as \(g_0 - g\) on the whole weakly\(^*\)-closed neighbourhood \(A\).

Remark 3.2. Clearly, the strong \(\tau_C\)-regularity implies the \(\tau_C\)-regularity. We don’t know whether the converse is true even in the case when \(C\) is the closed unit ball of \(X\).

Remark 3.3. Clearly, any interior point of \(G\) is a strongly \(\tau_C\)-regular point of \(G\). Moreover, it is not difficult to check that any star-shaped point of \(G\) is a strongly \(\tau_C\)-regular point of \(G\).
Below we provide an example to illustrate the notions.

Example 3.1. Let \(X := \mathbb{R}^2 \) be the 2-dimensional Euclidean space. Let \(C \) be the equilateral triangle with the vertexes \((0, 2), (\sqrt{3}, -1)\) and \((-\sqrt{3}, -1)\) (see Figure 1). Then \(0 \in \text{int} C \) and \(C^c \) is the equilateral triangle with vertexes \(x_1^*, x_2^*, x_3^*, \) where \(x_1^* := \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \ x_2^* := (0, -1)\) and \(x_3^* := \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\) and so \(\text{ext} C^c = \{x_1^*, x_2^*, x_3^*\} \) (see Figure 2). Let \(G \) be the subset defined by

\[
G = \left\{(t_1, t_2) : t_2 \geq \frac{1}{2} t_1, \ t_1 \leq 0\right\} \bigcup \left\{(t_1, t_2) : t_2 \geq -\frac{1}{2} t_1, \ t_1 \geq 0\right\}
\]

(see Figure 3). Clearly, \(G \) is not convex. We shall show that \(G \) is a strongly \(r_C \)-regular set. To this end, let \(g_0 \in G \). By Remark 3.3, we assume, without loss of generality, that \(g_0 = (a_1, a_2) \in \text{bd} G \) satisfies that

\[
a_1 > 0 \quad \text{and} \quad a_2 = -\frac{1}{2} a_1 \tag{3.13}
\]

(noting that the origin is a star-shaped point of \(G \)). Let \(A \) be a weakly*-closed subset of \(C^c \) satisfying (3.10) for some \(g = (b_1, b_2) \in G \) and some \(x \in X \). In the case when \(b_1 \geq 0 \) and \(b_2 \geq -\frac{1}{2} b_1 \), choose \(g_n = \left(1 - \frac{1}{n}\right) g_0 + \frac{1}{n} g \in G \) for each \(n \in \mathbb{N} \). Then it is easy to see that \(\{g_n\} \) is as desired. Below we consider the case when \(b_1 \leq 0 \) and \(b_2 \geq \frac{1}{2} b_1 \). It follows from (3.13) that

\[
(a_2 - b_2) - \frac{1}{2} (a_1 - b_1) = -a_1 + \frac{1}{2} b_1 - b_2 \leq -a_1 < 0.
\]

Consequently,

\[
x_n^*(g_0 - g) = -\frac{\sqrt{3}}{2} (a_1 - b_1) + \frac{1}{2} (a_2 - b_2) \leq -\frac{\sqrt{3}}{2} (a_1 - b_1) + \frac{1}{4} (a_1 - b_1) = \frac{3}{8} (1 - 2\sqrt{3}) a_1 < 0.
\]

This means that \(x_n^* \notin A \). Therefore, it suffices to consider the case when \(A = \{x_1^*, x_2^*\} \). To this end, let \(g_n = \left(1 - \frac{1}{n}\right) g_0 \) for each \(n \in \mathbb{N} \). Then \(\{g_n\} \subseteq G \) and \(g_n \to g_0 \). Noting that \(x_1^*(g_0) = \left(\frac{\sqrt{3}}{2} - \frac{1}{4}\right) a_1 \) and \(x_2^*(g_0) = \frac{1}{2} a_1 \), we have that

\[
\min_{x^* \in A} x^*(g_0 - g_n) = \frac{1}{n} \min_{x^* \in A} x^*(g_0) = \frac{1}{2n} a_1 > 0, \quad \forall n \in \mathbb{N}.
\]

This means that \(g_0 \) is a strongly regular point of \(G \), and so \(G \) is a strongly \(r_C \)-regular set.
Theorem 3.1. Consider the following assertion:

(i) The pair \((x, g_0)\) satisfies the \(\tau_C\)-KC.

(ii) The point \(g_0 \in \mathcal{P}_G^C(x)\).

(iii) The pair \((x, g_0)\) satisfies the \(\tau_C\)-PC.

Then (i)\(\Rightarrow\)(ii)\(\Rightarrow\)(iii). In addition, if \(g_0\) is a strongly \(\tau_C\)-regular point of \(G\) with respect to \(x\), then (i)\(\iff\)(ii)\(\iff\)(iii).

Proof. (i)\(\Rightarrow\)(ii). Suppose that (i) holds and let \(g \in G\). Then by Definition 3.3 (a), there exists \(x^* \in \Sigma_{g_0-x}\) such that \(x^*(g - g_0) \geq 0\). This together with Proposition 2.2 (v) implies that

\[
p_C(g_0 - x) = x^*(g_0 - g) + x^*(g - x) \leq x^*(g - x) \leq p_C(g - x);
\]

hence, \(g_0 \in \mathcal{P}_G^C(x)\) as \(g \in G\) is arbitrary and (ii) is proved.

(ii)\(\Rightarrow\)(iii). Suppose that (ii) holds. Let \(g \in G\) and \(x^* \in \Sigma_{g-x}\). Then \(x^*(g - x) = p_C(g - x)\); hence

\[
x^*(g_0 - g) = x^*(g_0 - x) + x^*(x - g) \leq p_C(g_0 - x) - p_C(g - x) \leq 0.
\]

This shows that \((x, g_0)\) satisfies the \(\tau_C\)-PC and (iii) is proved.

Suppose that \(g_0\) is a strongly \(\tau_C\)-regular point of \(G\) with respect to \(x\). It suffices to prove the implication (iii)\(\Rightarrow\)(i). To this end, suppose on the contrary that \((x, g_0)\) does not satisfy the \(\tau_C\)-KC. Then there exist \(g \in G\) and \(\delta > 0\) such that

\[
\max_{x^* \in \Sigma_{g_0-x}} x^*(g - g_0) = -\delta.
\]

Let

\[
U = \{x^* \in \overline{\text{ext} C^*} : x^*(g - g_0) < -\frac{\delta}{2}\} \quad \text{and} \quad A = \overline{U^*}.
\]

Then \(A\) is a weakly*-closed subset of \(C^*\) satisfying \(E_{g_0-x} \subseteq A \subseteq \overline{\text{ext} C^*}\) and

\[
\min_{x^* \in A} x^*(g_0 - g) \geq \frac{\delta}{2} > 0.
\]

Since \(g_0\) is a strongly \(\tau_C\)-regular point of \(G\) with respect to \(x\), there exists a sequence \(\{g_n\} \subseteq G\) such that

\[
\lim_{n \to \infty} g_n = g_0
\]

and

\[
\min_{x^* \in A} x^*(g_0 - g_n) > 0, \quad \forall \ n \in \mathbb{N}.
\]

Let \(K = \overline{\text{ext} C^*} \setminus U\). Then \(K\) is the weakly*-compact subset of \(\overline{\text{ext} C^*}\). Moreover, we have that \(K \cap \Sigma_{g_0-x} = \emptyset\) because \(E_{g_0-x} \subset U\) by (3.14) and (3.15). Consequently,

\[
\alpha := \max_{x^* \in K} x^*(g_0 - x) < p_C(g_0 - x).
\]

Set

\[
\alpha_0 := \frac{1}{2}(p_C(g_0 - x) - \alpha).
\]
Thus, by the separation theorem (cf. [10]), there exist $\in (g, P)$ for the pair (p, g). In particular, we have that $p \in (g, g)$. Without loss of generality, we may assume that $g = 0$. Since $\lim_{n \to \infty} g_n = g_0$ by (3.17), one has from Proposition 2.2 (vi) that there exists $n_0 \in \mathbb{N}$ such that

$$\max\{pC(g_{n_0} - g_0), pC(g_0 - g_{n_0})\} < \alpha_0.$$

(3.21)

Thus

$$pC(g_0 - x) \leq pC(g_0 - g_{n_0}) + pC(g_{n_0} - x) < \alpha_0 + pC(g_{n_0} - x).$$

(3.22)

It follows from Proposition 2.2 (v), (3.19)-(3.22) that

$$\max_{x^* \in K} x^*(g_{n_0} - x) \leq \max_{x^* \in K} x^*(g_0 - g_0) + \max_{x^* \in K} x^*(g_0 - x) \leq pC(g_{n_0} - g_0) + \alpha \leq \alpha_0 + \alpha = pC(g_0 - x) - \alpha_0 < pC(g_{n_0} - x).$$

This shows that $K \cap E_{g_{n_0} - x} = \emptyset$, and so $E_{g_{n_0} - x} \subseteq \overline{C^0} \setminus K = U$. Therefore,

$$\max_{x^* \in E_{g_{n_0} - x}} x^*(g_0 - g_{n_0}) \geq \inf_{x^* \in U} x^*(g_0 - g_{n_0}) = \min_{x^* \in A} x^*(g_0 - g_{n_0}) > 0$$

thanks to (3.18). Thus, $\max_{x^* \in E_{g_{n_0} - x}} x^*(g_0 - g_{n_0}) > 0$ by (3.7). This contradicts the τ_C-PC for the pair (x, g_0), and the proof is complete. \hfill \Box

Remark 3.4. One natural and interesting question is: Wether the implication (iii)\Rightarrow(i) remains true under simple (not strong) regularity assumption? Even in the case when C is the unit closed ball, we don’t know the answer and so we leave it open.

The main result of this section is a generalization of [4, Theorem 9].

Theorem 3.2. The following assertions are equivalent.

(i) The element g_0 is a τ_C-solar point of G with respect to x.

(ii) The element $g_0 \in P_C^C(x)$ if and only if (x, g_0) satisfies the τ_C-KC.

(iii) The element g_0 is a τ_C-regular point of G with respect to x.

Proof. (i)\Rightarrow(ii). Suppose that (i) holds. The sufficiency part of (ii) follows directly from Theorem 3.1. Below we show the necessity part of (ii). To this end, we assume that $g_0 \in P_C^C(x)$. Without loss of generality, we may assume that $x \neq g_0$ and $pC(g_0 - x) \neq 0$. Let $g \in G \setminus \{g_0\}$ be arbitrary. Then $g_0 \in P_C^C([g_0, g], [g_0, g]) \cap \text{int}(C + x) = \emptyset$. Thus, by the separation theorem (cf. [10]), there exist $y^* \in X^* \setminus \{0\}$ and a real number r such that

$$y^*(z - x) \geq r, \quad \forall z \in [g_0, g]$$

(3.23)

and

$$y^*(y - x) \leq r, \quad \forall y \in C + x.$$

(3.24)

In particular, we have that $pC(y^*) \leq r$ by Proposition 2.2(v). Let $x^* = r^{-1}y^*$. Then $pC(x^*) \leq 1$ and so $x^* \in C^0$. Since $g_0 \in [g_0, g] \cap (C + x)$, it follows from (3.23) and (3.24) that

$$r = y^*(g_0 - x).$$

(3.25)
This implies that \(x^*(g_0 - x) = 1 = p_C(g_0 - x) \), and so \(x^* \in \Sigma_{g_0 - x} \). Furthermore, \(x^*(g - g_0) \geq 0 \) thanks to (3.23) and (3.25). Hence the necessity part holds as \(g \in G \setminus \{g_0\} \) is arbitrary and the implication is proved.

(ii) \(\Rightarrow \) (i). Suppose that (ii) holds and assume that \(g_0 \in P_G^C(x) \). Then
\[
\max_{x^* \in \Sigma_{g_0 - x}} x^*(g - g_0) \geq 0, \quad \forall \ g \in G. \tag{3.26}
\]
Let \(\lambda > 0 \) be arbitrary. Noting that \(g_0 - x_{\lambda} = \lambda(g_0 - x) \), one has that \(\Sigma_{g_0 - x_{\lambda}} = \Sigma_{g_0 - x} \). This together with (3.26) implies that \((x_{\lambda}, g_0) \) satisfies the \(\tau_C \)-KC, and so \(g_0 \in P_G^C(x_{\lambda}) \). This shows that \(g_0 \) is a \(\tau_C \)-solar point of \(G \) with respect to \(x \).

(ii) \(\Rightarrow \) (iii). Suppose that (ii) holds. Let \(g \in G \) and \(A \) be a weakly\(^*\)-closed subset of \(C^o \) satisfying (3.10). Then
\[
\max_{x^* \in x_{\lambda} - x} x^*(g - g_0) \leq \max_{x^* \in A} x^*(g - g_0) < 0.
\]
This together with (3.7) implies that \((x, g_0) \) does not satisfy the \(\tau_C \)-KC; hence, \(g_0 \notin P_G^C(x) \) by (ii). Since \(g_0 \) is a \(\tau_C \)-solar point of \(G \) with respect to \(x \) by the equivalence of (i) and (ii) just proved, it follows from Proposition 3.3 that \(g_0 \) is not local best \(\tau_C \)-approximation to \(x \) from \(G \). Thus there exists a sequence \(\{g_n\} \subseteq G \) such that \(g_n \to g_0 \) and
\[
p_C(g_n - x) < p_C(g_0 - x), \quad \forall \ n \in \mathbb{N}. \tag{3.27}
\]
Let \(x^* \in A \) be arbitrary. Then, \(x^*(g_n - x) \leq p_C(g_n - x) \) for each \(n \in \mathbb{N} \). This and (3.27) imply that
\[
x^*(g_0 - g_n) \geq x^*(g_0 - x) - p_C(g_n - x) > x^*(g_0 - x) - p_C(g_0 - x), \quad \forall \ n \in \mathbb{N}.
\]
In view of Definition 3.4, \(g_0 \) is a \(\tau_C \)-regular point of \(G \).

(iii) \(\Rightarrow \) (ii). Suppose that (iii) holds. By Theorem 3.1 (i), it suffices to prove that \((x, g_0) \) satisfies the \(\tau_C \)-KC whenever \(g_0 \in P_G^C(x) \). To this end, we assume on the contrary that it is not the case. Then, there are \(g \in G \) and \(\delta > 0 \) such that (3.14) holds. Let \(U \) and \(A \) be defined by (3.15). Then (3.16) holds. Since \(g_0 \) is a \(\tau_C \)-regular point of \(G \) with respect to \(x \), there exists a sequence \(\{g_n\} \subseteq G \) such that \(\lim_{n \to \infty} g_n = g_0 \) and (3.11) holds. This together with Proposition 2.2 implies that
\[
\max_{x^* \in A} x^*(g_n - x) < p_C(g_0 - x), \quad \forall \ n \in \mathbb{N}. \tag{3.28}
\]
On the other hand, let \(K = \text{ext} C^o \setminus U \). Then there is \(\epsilon > 0 \) such that
\[
\max_{x^* \in K} x^*(g_0 - x) < p_C(g_0 - x) - \epsilon. \tag{3.29}
\]
Since \(\lim_{n \to \infty} g_n = g_0 \), one has that \(\lim_{n \to \infty} p_C(g_n - g_0) = 0 \). Let \(n_0 \in \mathbb{N} \) be such that \(p_C(g_{n_0} - g_0) < \epsilon \). It follows from (3.29) that
\[
\max_{x^* \in K} x^*(g_{n_0} - x) \leq p_C(g_{n_0} - g_0) + \max_{x^* \in K} p_C(g_0 - x) < p_C(g_0 - x). \tag{3.30}
\]
Combining (3.28) and (3.30), we obtain that \(p_C(g_{n_0} - x) < p_C(g_0 - x) \), which contradicts that \(g_0 \in P_G^C(x) \). The proof is complete.
The following corollary is a global version of Theorem 3.2.

Corollary 3.1. The following statements are equivalent.

(i) G is a τ_C-sun of X.

(ii) For each $g_0 \in G$ and each $x \in X$, $g_0 \in P_G^C(x)$ if and only if (x, g_0) satisfies the τ_C-KC.

(iii) G is a τ_C-regular set.

4 Smoothness and convexity of τ_C-B-suns

We begin with the notion of smooth convex sets (cf. [10]). Let $x \in \text{bd}C$ and $x^* \in C^\circ$. Recall that x^* is a supporting functional of C at x if $x^*(x) = 1$.

Definition 4.1. The set C is called smooth if each point of $\text{bd}C$ has a unique supporting functional.

The following notion extends a similar concept introduced in [3].

Definition 4.2. The set G is called a τ_C-B-sun of X if for each $x \in X$ there exists $g_0 \in P_G^C(x)$ such that g_0 is a τ_C-solar point of G with respect to x.

Remark 4.1. Clearly, if G is an existence set (i.e., $P_G^C(x) \neq \emptyset$ for each $x \in X$), then a τ_C-sun must be τ_C-B-sun. The converse is not true in general, see [21, Example 1.4] for the case when C is the unit ball of X.

The main result of this section is as follows, which extends [3, Theorem 2.5] to the setting of the best τ_C-approximation.

Theorem 4.1. The set C is smooth if and only if each τ_C-B-sun of X is convex.

Proof. “\Longrightarrow”. Suppose that C is smooth and G is a τ_C-B-sun of X. It suffices to verify that $\frac{1}{2}(g_1 + g_2) \in G$ for each pair of elements $g_1, g_2 \in G$. To this end, let $g_1, g_2 \in G$ and let $x = \frac{1}{2}(g_1 + g_2)$. By Definition 4.2 there exists $g_0 \in P_G^C(x)$ such that g_0 is a τ_C-solar point of G with respect to x. It follows from Theorem 3.2 that there exist $x^*_1, x^*_2 \in \Sigma_{g_0 - x}$ such that

$$x^*_i(g_i - g_0) \geq 0, \quad \forall i = 1, 2. \tag{4.1}$$

Suppose that $g_0 \neq x$ and consider the point $\bar{y} := (g_0 - x)/p_C(g_0 - x)$. Then $\bar{y} \in C$ and $x^*_i(\bar{y}) = 1$ for each $i = 1, 2$. Noting that each $x^*_i \in C^\circ$, we have that $x^*_i, i = 1, 2$, are supporting functionals of C° at \bar{y}. Hence, $x^*_1 = x^*_2$ by the smoothness of C. Let $x^* = x^*_1$. Then

$$p_C(g_0 - x) = x^*(g_0 - x) = \frac{1}{2}x^*(g_0 - g_1) + \frac{1}{2}x^*(g_0 - g_2) \leq 0$$

thanks to (4.1). By Proposition 2.2 (i), one has $x = g_0$, which is a contradiction, and hence $\frac{1}{2}(g_1 + g_2) \in G$.

“\Longleftarrow”. Conversely, suppose on the contrary that C is not smooth. Then there exist $x_0 \in \text{bd}C$ and two functional $x^*_1, x^*_2 \in C^\circ$ such that

$$x_1 \neq x_2 \quad \text{and} \quad x^*_1(x_0) = x^*_2(x_0) = 1. \tag{4.2}$$
Let $G_i := \{ x \in X : x_i^*(x) \geq 0 \}$ for each $i = 1, 2$, and let $G = G_1 \cup G_2$. Then G is a closed and nonconvex subset of X. In fact, the closedness is clear. To prove the nonconvexity, we first prove that $\ker(x_1^*) \cap G_2 \neq \emptyset$, where $\ker(x^*) := \{ x \in X : x^*(x) = 0 \}$ is the kernel of the functional x^*. Indeed, otherwise, one has that $\ker(x_1^*) \subseteq G_2$. Let $x \in X$. Then, by (4.2),

$$x - x_i^*(x)x_0 \in \ker(x_i^*), \quad \forall \ i = 1, 2. \tag{4.3}$$

In particular, we have that $x - x_1^*(x)x_0 \in G_2$. It follows that

$$x_2^*(x) \geq x_2^*(x_0)x_1^*(x) = x_1^*(x), \quad \forall \ x \in X.$$

This implies that $x_1^* = x_2^*$, which is a contradiction. Therefore, $\ker(x_1^*) \cap G_2 \neq \emptyset$. Similarly, we also have that $\ker(x_2^*) \cap G_1 \neq \emptyset$. Take $x_1 \in \ker(x_1^*) \cap G_2$ and $x_2 \in \ker(x_2^*) \cap G_1$. Then $x_1, x_2 \in G$ and $x_i^*(\frac{1}{2}x_1 + \frac{1}{2}x_2) < 0$ for each $i = 1, 2$. This means that $\frac{1}{2}x_1 + \frac{1}{2}x_2 \notin G$, and so G is not convex.

By the definition of τ_C, it is easy to see that

$$\tau_C(x; G) = \min \{ \tau_C(x; G_1), \tau_C(x; G_2) \}, \quad \forall \ x \in X. \tag{4.4}$$

We will prove that, for each $i = 1, 2$,

$$\tau_C(x; G_i) = -x_i^*(x), \quad \forall \ x \in X \setminus G_i. \tag{4.5}$$

To this end, fix $i = 1, 2$ and let $x \in X \setminus G_i$. Then $x_i^*(x) < 0$, and by (4.3), one has that

$$\tau_C(x; G_i) \leq p_C((x - x_i^*(x)x_0) - x) = -x_i^*(x)p_C(x_0) = -x_i^*(x)$$

(noting that $p_C(x_0) = 1$). On the other hand,

$$\tau_C(x; G_i) = \inf_{g \in G_i} p_C(g - x) \geq \inf_{g \in G_i} x_i^*(g - x) \geq -x_i^*(x),$$

and the assertion (4.5) is seen to hold.

Below we prove that G is a τ_C-B-sum of X. To this end, let $x \in X \setminus G$ and $d := \tau_C(x; G)$. Without loss of generality, we may assume that

$$\tau_C(x; G_1) \leq \tau_C(x; G_2). \tag{4.6}$$

Then by (4.5),

$$d = \tau_C(x; G_1) = -x_1^*(x). \tag{4.7}$$

Let $g_0 = x + dx_0$. Then by (4.3)

$$g_0 = x - x_1^*(x)x_0 \in \ker(x_1^*) \subseteq G_1 \subseteq G. \tag{4.8}$$

Moreover

$$p_C(g_0 - x) = dp_C(x_0) = d = \tau_C(x; G_1) = \tau_C(x; G). \tag{4.9}$$

Hence $g_0 \in P^C_G(x)$. We assert that $g_0 \in P^C_G(x_\lambda)$ for each $\lambda > 0$. Granting this, G is a nonconvex, τ_C-B-sum and the proof of Theorem 4.1 is complete. Let $\lambda > 0$. By (4.8) and (4.9), we have that $g_0 \in P^C_G(x)$. Since G_1 is convex, it follows from Proposition 3.1 that
\(g_0 \in P_{G_1}^C(x_\lambda) \). Thus, to complete the proof, it suffices to show that \(\tau_C(x_\lambda; G) = \tau_C(x_\lambda; G_1) \).

To do this, note that \(x_2^*(x) \leq x_1^*(x) = -d \) by (4.5), (4.6) and (4.7). Consequently,

\[
\begin{align*}
x_2^*(x_\lambda) &= (1 - \lambda)x_2^*(g_0) + \lambda x_2^*(x) \\
&= (1 - \lambda)(x_2^*(x) + dx_2^*(x_0)) + \lambda x_2^*(x) \\
&= x_2^*(x) + d(1 - \lambda) \\
&\leq -d + d(1 - \lambda) \\
&= -\lambda d.
\end{align*}
\]

This together with (4.5) (with \(x_\lambda \) in place of \(x \)) implies that

\[
\tau_C(x_\lambda; G_2) \geq d\lambda = \tau_C(x_\lambda; G_1).
\]

Therefore, \(\tau_C(x_\lambda; G) = \tau_C(x_\lambda; G_1) \) thanks to (4.4). The proof is complete.

\[
\Box
\]

References

